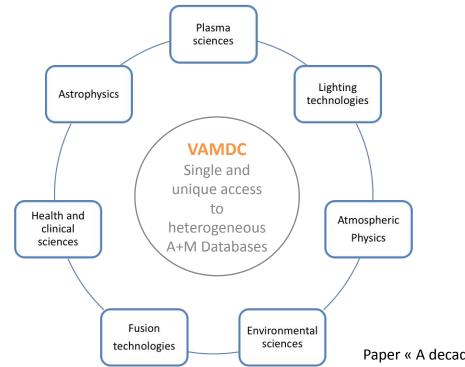


FAIR Assessment of the VAMDC infrastructure

Reviewing the FAIR-ness of the e-infrastructure following the RDA guidelines



Carlo Maria Zwölf, Nicolas Moreau and Marie-Lise Dubernet

The Virtual Atomic and Molecular Data Centre in a nutshell

- E-infrastructure connecting about 40 heterogeneous databases that can be accessed from <u>http://portal.vamdc.org/</u> Or any VAMDC compatible tools
- Consortium of 25 partners
- High quality scientific data come from different Physical/Chemical Communities
- Provides a large dissemination platform to data producers

Paper « A decade with VAMDC : results and ambition, Atoms, 2020 » <u>http://dx.doi.org/10.3390/atoms8040076</u>

Databases	Type of A&M Data	Partners	Application's Fields		
NIFS AMDIS IONIZATION	Electron-impact ionization cross-sections and rate coefficients (atoms & atomic ions)	National Institute for Fusion Science, Toki, Japan, I. Murakami	Stellar, Solar, plasma, fusion		
VALD	Atomic Linelists	Uppsalla, Vienna, Moscow – N. Piskunov	Stellar –Solar		
NIST Atomic Spectra	Spectroscopy of Atoms –	NIST – Yuri Ralchenko	Stellar – ISM -		
CHIANTI	Atomic Linelists and collisions	Cambridge (UK)+MSSL/UCL – H. Mason, G. Rixon	Solar Physics		
Spectr-W3	Atomic Linelists and Collisions	Russia (RFNC VNIITF) – P. Loboda	Solar/Stellar Physics + Fusion, plasma		
Stark-B	Atomic LineShifts/Broadening with charged perturbers	Observatory of Belgrade (Serbia) + Observatory of Paris (LERMA) – M. Dimitrijevic/S. Sahal-Bréchot	Stellar Physics + Plasmas		
TipBase, TopBase	Atomic Linelists and Collisions from Opacity Project and IRON Project	Observatory of Paris (LERMA) + CDS (Strasbourg, Fce) – F. Delahaye/C. Zeippen/C. Mendoza	Stellar, Solar Physics,		
SESAM	Electronic Spectra of atoms and molecules	Paris Obs. – E. Roueff	ISM - Stellar		

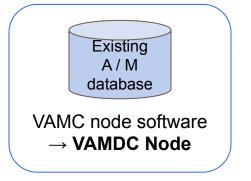
Databases	Type of A&M Data	Partners	Application's Fields
MOLD	Photo-Dissociation Cross-sections	Institute of Physics, Astronomical Obs, Belgrade, Serbia- Vladimir Sreckovic, V. Vujcic, D. Jevremovic	Stellar
BEAM-DB	Molecular/atom—electron collisions	Institute of Physics, Belgrade, Serbia Bratislav Marinkovi\'c	plasma, radiation damage
IDEABD	Dissociative electron attachment upon interaction of low energy electrons with molecules.	Innsbrück F. Duensing	Planets, ExoPlanets, ISM, Radiation Damage
AMBDAS	Collisions in plasmas (bibliographic) - searchable via processes ans species	IAEA, Vienna, Austria - C. Hill	Nuclear Fusion

Databases	Type of A&M Data	Partners	Application's Fields
CDMS	Molecular Linelists (mm, Sub-mm)	Cologne (Germany) – S. Schlemmer	ISM + Earth+ CO
JPL	Molecular Linelists (mm, Sub-mm)	Pasadena (USA) + Cologne (Germany) – B. Drouin	ISM + Earth+CO
HITRAN	Molecular Linelists and Broadening Coefficients	Harvard (USA) + UCL – I. Gordon + L. Rothman	Earth, Planets, Exo-Planets
S&MPO	O ₃ linelists	Reims (France)+ Tomsk (Russia) – V. Tyuterev	Earth – Exo-Planets
MeCaSDa	Linelists CH ₄	Dijon (France) – V. Boudon	Earth, Planets, Exo-Planets, Brown dwarfs
SHeCaSDa	Sulfur Hexafluoride Calculated LInelists	Dijon – V. Boudon	Earth
TFMeCaSDa	Tetrafluoro-Methane calculated linelists	Dijon – V. Boudon	Earth
ECaSDa	Ethene Calculated Linelists	Reims – L. Daumont	Earth and Planets
GeCaSDa	GeH ₄ Linelists	Dijon – V. Boudon	Planets

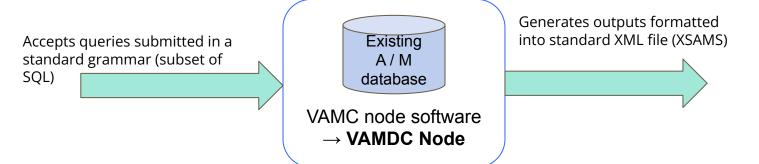
Databases	Type of A&M Data	Partners	Application's Fields
RuCaSDa	RuO ₄ Linelists	Dijon – V. Boudon	Nuclear Industry
TFSiCaSDa	SiF ₄ Linelists	Dijon – V. Boudon	Earth
UHeCaSDa	UF ₆ Linelists	Dijon – V. Boudon	Nuclear Industry
CDSD-296	CO ₂ Linelists (intensity cut-off)	IAO, Tomsk – V. Perevalov	Earth, Planets, Brown Dwarfs
CDSD-1000	CO ₂ Linelists (intensity cut-off)	IAO, Tomsk – V. Perevalov	Earth, Planets, Brown Dwarfs
CDSD-4000	CO ₂ Linelists (intensity cut-off)	IAO, Tomsk – V. Perevalov	Earth, Planets, Brown Dwarfs
NOSD-1000	N ₂ O Linelists (intensity cut-off)	IAO, Tomsk – V. Perevalov	Earth, Planets
NDSD-1000	NO ₂ Linelists (intensity cut-off)	IAO, Tomsk – V. Perevalov	Earth, Planets
ASD-1000	C ₂ H ₂ Linelists (intensity cut-off)	IAO, Tomsk – V. Perevalov	Earth, Planets

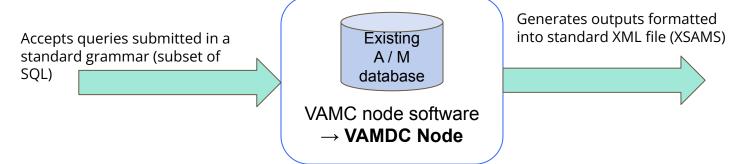

Databases	Type of A&M Data	Partners	Application's Fields
РАН	PAH Theoretical Data and soon experimental Data	Observatory of Cagliari (Italy) – IRAP (Toulouse, France) – G. Mulas+C. Joblin	ISM, Planets, Earth
KIDA	Kinetic Data	Bordeaux (France) – P. Gratier & V. Wakelam	ISM - Planets
UdfA	Kinetic Data (ex-UMIST)	Belfast (UK) – T. Millar	ISM - Planets
BASECOL	Low Energy Molecular Collisions	Observatory of Paris – M.L. Dubernet	ISM - CO
LASP	Solid Spectroscopy Data	Obs. of Catania – G. Leto	Planets, ISM
GhoSST	Solid Spectroscopy Data	Grenoble (France) – B. Schmitt	Planets, ISM
W@DIS	Water Information System	IAO, Tomsk – A. Fazliev	Earth and Planets

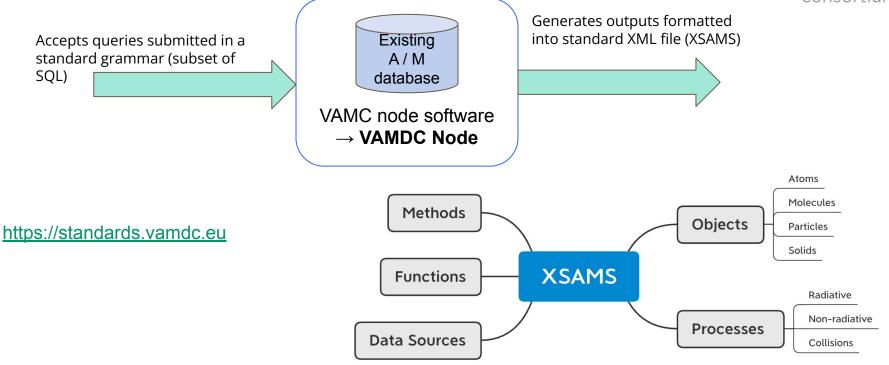
To be connected to VAMDC infrastructure

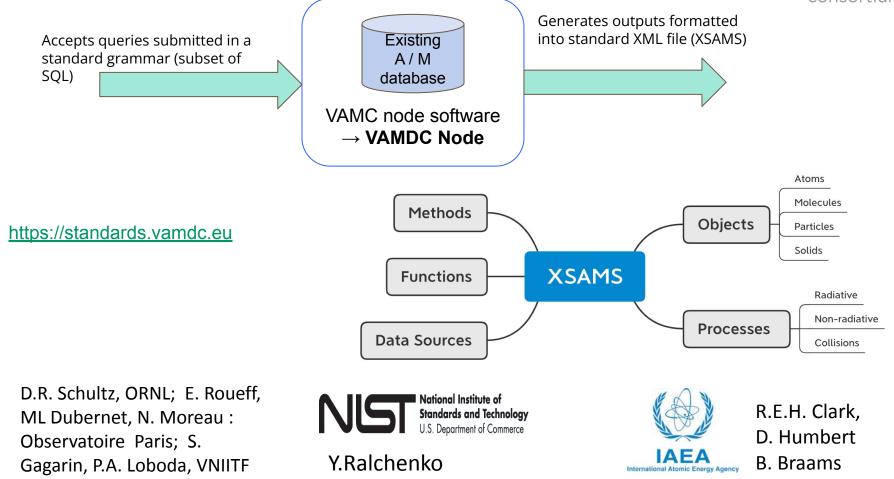


Databases	Type of A&M Data	Partners	Application's Fields
ExoMolOP	Molecular Opacities	University College London, UK – J. Tennyson	Exo, Brown Dwarf, Earth, Stellar
SSHADE	Solid Spectroscopy Data – Interface to infrastructure	Grenoble (France) & other countries – B. Schmitt et al	Earth, Comets, Exo-Planets, ISM, Planets
IAMDB	Indian Atomic and Molecular Database (atomic collisions, A+M spectroscopy)	B. Antony- Indian Institute of Technology, Dhanbad, India E. Krishnakumar - Raman Research Institute, Bengalore, India	Astrophysics, Other
DESIRE	Spectroscopy of sixth row elements (Z=72-86)	Mons University and Liege University, Belgium – P.Quinet, P. Palmeri	Plasmas – Stellar - Solar
DREAM	Radiative data for rare earth	Mons University and Liege University, Belgium – P Quinet, P. Palmeri	Stellar-Solar-Plasmas – Lighting -
PEARL	Atomic Processes	Nuclear data Center, KAERI, Daejon, South Korea Kwon Duck-Hee	Stellar-Solar-Plasmas – Fusion
Clusters	Cluster size distributions, condensation	Innsbrück F. Duensing, P. Scheier	Planets, ExoPlanets, Solvation, Biology
Additional NIFS Databases	Atomic/Molecular processes	National Institute for Fusion Science, Toki, Japan, I. Murakami	Stellar, Solar, plasma, fusion

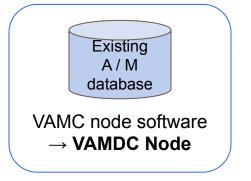


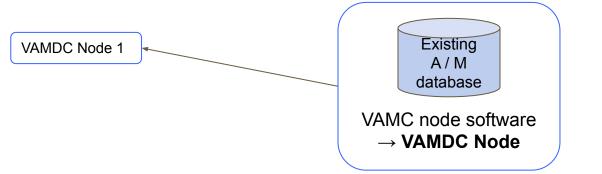


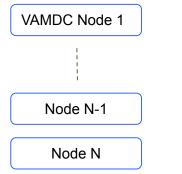


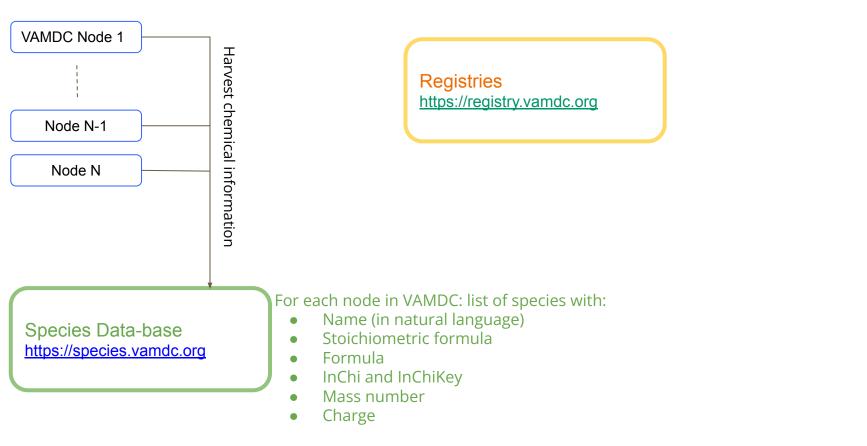


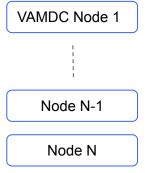
https://standards.vamdc.eu

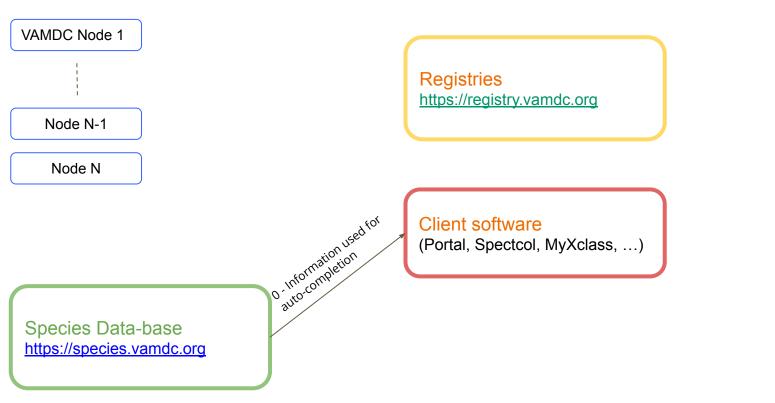




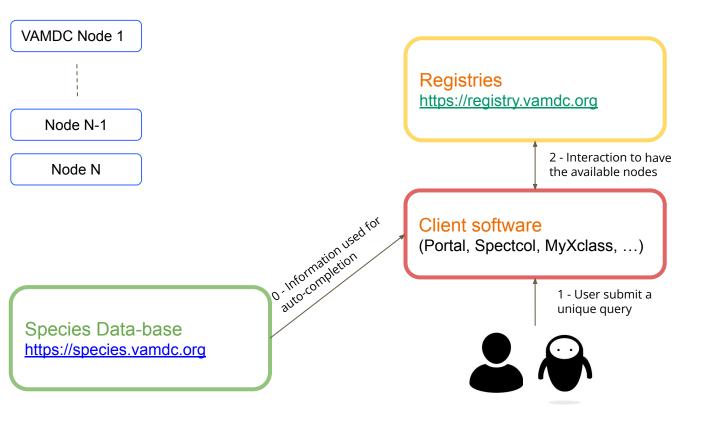



Registries https://registry.vamdc.org

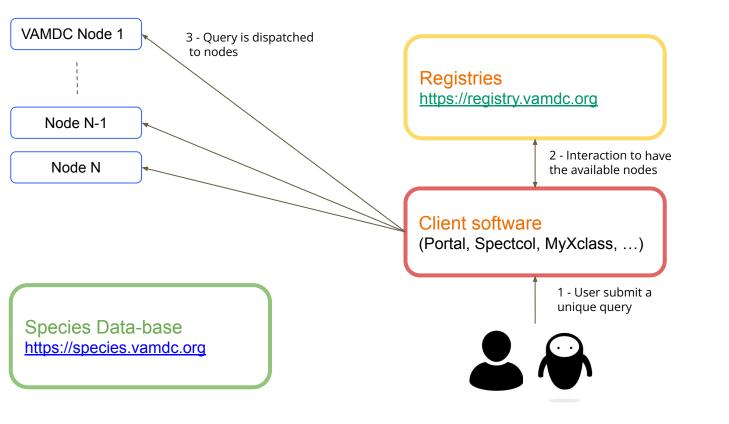


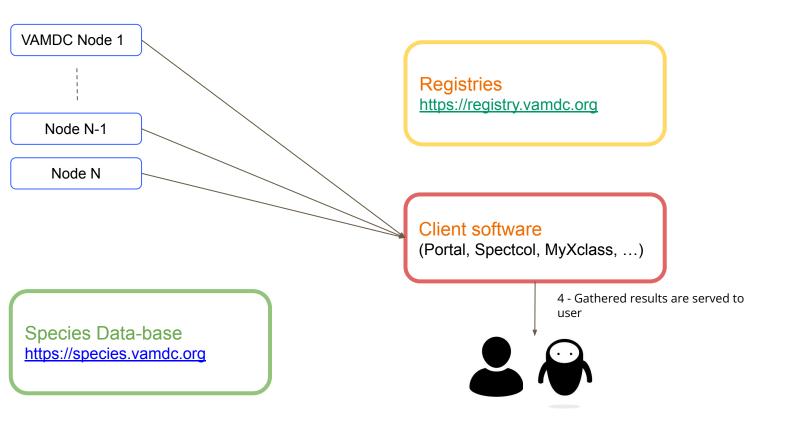


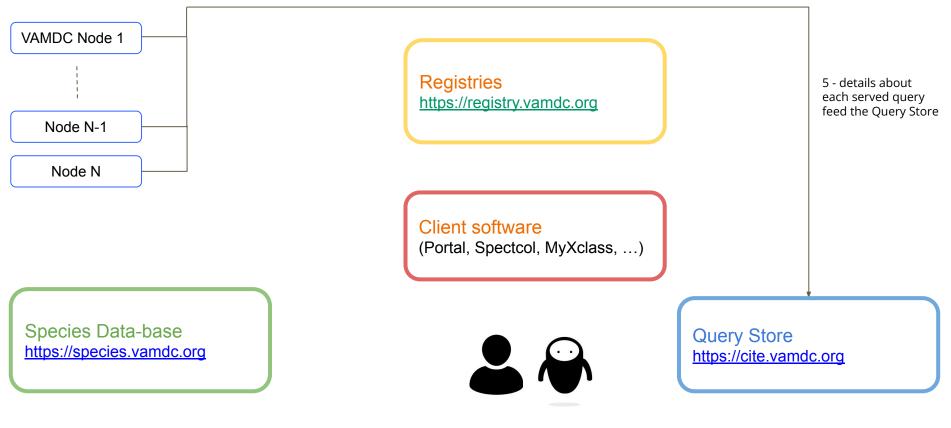
Registries https://registry.vamdc.org

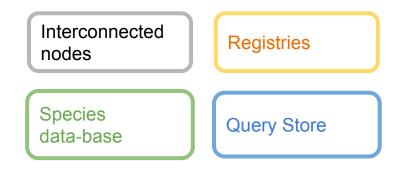

Client software (Portal, Spectcol, MyXclass, ...)

Species Data-base https://species.vamdc.org









This infrastructure has been designed since 2009 so that data are:

- Easy to discover and to find
- Immediately accessible
- Interoperable
- Easy to reuse (mechanisms for data-citation and delegation of bibliographic credits)

This is
$$F_{indable} \land C_{ccessible} \land I_{nteroperable} \land R_{eusable}$$
 ante litteram!

The Fair Principles: definitions and impacts

First definition : Wilkinson et al, The FAIR Guiding Principles for scientific data management and stewardship. Sci Data 3, 160018 (2016). <u>https://doi.org/10.1038/sdata.2016.18</u>

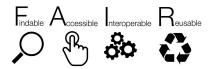
Findable

- F1. (Meta)data are assigned a globally unique and persistent identifier
- F2. Data are described with rich metadata
- F3. Metadata clearly and explicitly include the identifier of the data they describe
- F4. (Meta)data are registered or indexed in a searchable resource

Accessible

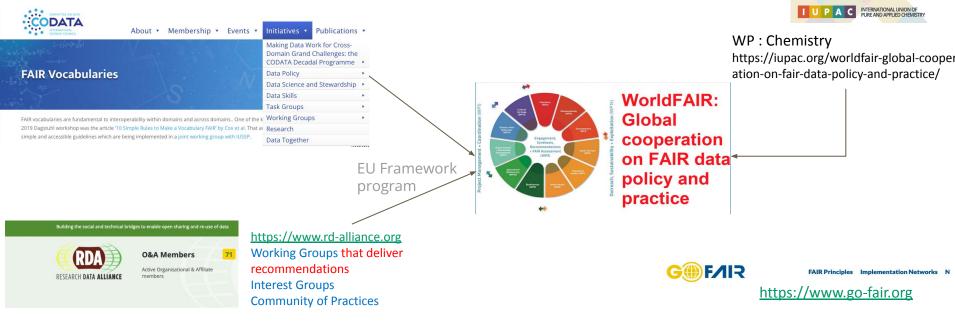
- A1. (Meta)data are retrievable by their identifier using a standardised communications protocol
 - A1.1 The protocol is open, free, and universally implementable
 - A1.2 The protocol allows for an authentication and authorisation
 procedure, where necessary
- <u>A2. Metadata are accessible, even when the data</u> are no longer available

Interoperable


- <u>I1. (Meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation.</u>
- 12. (Meta)data use vocabularies that follow FAIR principles
- <u>I3. (Meta)data include qualified references to other</u> (meta)data

Re-usable

- **R1**. (Meta)data are richly described with a plurality of accurate and relevant attributes
- **R1.1**. (Meta)data are released with a clear and accessible data usage license
- R1.2. (Meta)data are associated with detailed provenance
- <u>**R1.3**</u>. (Meta)data meet domain-relevant community standards


The Fair Principles: definitions and impacts

First definition : Wilkinson et al, The FAIR Guiding Principles for scientific data management and stewardship. Sci Data 3, 160018 (2016). <u>https://doi.org/10.1038/sdata.2016.18</u>

In few years FAIR became a MUST for data oriented initiatives and communities

The Fair Principles: definitions and impacts

Chair (s): Edit Herczog, Keith Russell, Shellev Stall

Secretariat Liaison: Stefanie Kethers TAB Liaison: Karin Breitman

Posts Wiki Events Repository Outputs	Case Plenaries	Members

DOI: 10.15497/rda00050

FAIR Data Maturity Model: core criteria to assess the implementation level of the FAIR data principles

Webinar - The RDA FAIR Data Maturity Model WG: Aligning International Initiatives for Promoting and Assessing FAIR Data -19/11/2020

Webinar - Connecting Data, Institutions and People: FAIR Digital Objects, RDA outputs and the design of the DiSSCo Research Infrastructure - 18 March 2021

O&A Members Active Organisational & Affiliate

Building the social and technical bridges to enable open sharing and re-use of data

members

The RDA FAIR Data Maturity Model Working Group develops as an RDA Recommendation a common set of core assessment criteria for FAIRness and a generic and expandable self-assessment model for measuring the maturity level of a dataset. The aim is not to develop yet another FAIR assessment approach but to build on existing initiatives, looking at common elements and allowing the group to identify core elements for the evaluation of FAIRness. That will increase the coherence and interoperability of existing or emerging FAIR assessment frameworks and it will ensure the combination and compatibility of their results in a meaningful way.

The WG brings together stakeholders from different scientific and research disciplines, the industry and public sector, who are active and/or interested in the FAIR data principles and in particular in assessment criteria and methodologies for evaluating their real-life uptake and implementation level.

The RDA evaluation framework

	AIR Data	Maturi	ty Model	WG				
Posts Group Statu	Wiki	Events	Repository	Outputs group)	Case Statements	Plenaries	Members	DOI : 10.15497/rda00050

The recommendation consists of ~40 indicators

- 7 for **F**indable principle,
- 12 for Accessible
- 12 for Interoperable
- 10 for **R**eusable

Each indicator has a priority which determines its importance

- Essential
- Important
- Useful

The level of maturity for the indicator is an integer taking the following values

- 0 non applicable
- 1 not being considered yet
- 2 under consideration or in planning phase
- 3 in implementation phase
- 4 fully implemented

The RDA evaluation framework

	AIR Data	Maturi	ty Model	WG				
Posts Group Statu	Wiki	Events	Repository	Outputs group)	Case Statements	Plenaries	Members	DOI : 10.15497/rda00050

We went through all criteria to assess the FAIRness of VAMDC

A priori thoughts:

- Maybe a quite technocratic generic document. Is it relevant for our science platform?
- We are already FAIR. Do we need this kind of evaluation?

Actually we learnt a lot!

Evaluation for Findable principle

- Evaluation relies on 7 indicators
- All these 7 are essential
- All except one indicator have a maturity level = 4
- The only indicator having a maturity level = 3 is RDA-F4_01M associated with metadata indexing and harvesting from generic indexing services (e.g. Google).

 Indicators for Findable

 3

 3

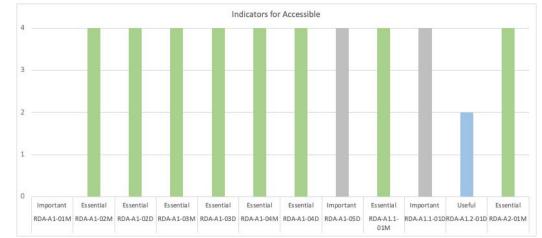
 2

 1

 0

 Essential
 Essential

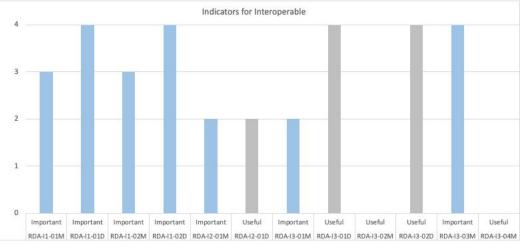
 RDA-F1-01M
 RDA-F1-02M


 RDA-F1-01M
 RDA-F1-02M

The analysis is very satisfactory for Findable principle

Evaluation for Accessible principle

- Evaluation relies on 12 indicators
 - 8 are essential
 - 3 are important
 - 1 is useful
- One important indicator does not apply
- All the essential and important indicators have a maturity level = 4
- The useful indicator RDA-A1.2-01D (associated with data accessibility through a protocol that support Authentication and authorisation) has a maturity level = 2 → Access protocol is free

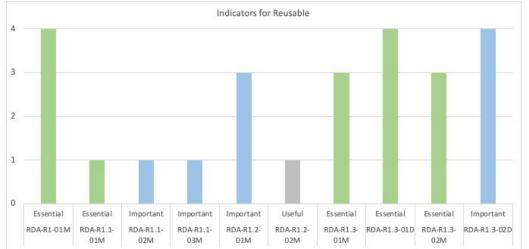


The analysis is very satisfactory for Accessible principle

Evaluation for Interoperable principle

- Evaluation relies on 12 indicators
 - 7 are important
 - 5 are useful
- Two useful indicators do not apply
- The important indicators RDA-I1-01M and RDA-I1-02M (associated with the standard and machine actionable representation of metadata) have a maturity level =3, because some service-endpoints on the Species database and on the Query Store are not standardised, nor machine actionable.

- The important indicator RDA-I2-01M and the useful indicator RDA-I2-01D (both associated with the usage of FAIR compliant vocabularies) have a maturity level =2, because the dictionaries defined within the VAMDC infrastructure are not fully FAIR compliant, since they lack machine actionability.
- All the other indicators have a maturity level = 4.



The analysis for Interoperable principle is not as satisfactory as for F and A principles. But not essential indicator is involved.

Evaluation for Reusable principle

Consortium

- Evaluation relies on 10 indicators
 - 5 are essential
 - 4 are important
 - 1 is useful
- The essential indicator RDA-R1.1-01M and the two important indicators RDA-R1.1-02M and RDA-R1.1-03M (all these indicators are about licenses on data and metadata) have a maturity level = 1, because in VAMDC there is not a common policy about licenses.

- The important indicator RDA-R1.2-01M and the useful indicator RDA-R1.2-02M, about provenance information and its expression using cross-community standards, have respectively a maturity level = 3 and = 1 : the provenance information is not systematically timestamped (e.g. in the Species database) and the available provenance information does not follow any particular standard.
- The two essential indicators RDA-R1.3-01M and RDA-R1.3-02M (about compliance of metadata with community and machine actionable standards) have a maturity level =3 because some pieces of information returned by the Species database and the Query Store do not follow any metadata standard.
- All the other indicators have a maturity level = 4

The evaluation for the Reusable principle is the worst compared to the previous one

Conclusions

The analysis was very useful !!

- The RDA FAIR Data Maturity Model, mainly designed for standalone data-sets or repositories, perfectly scales in the case of a distributed and complex e-infrastructure as VAMDC
- The FAIRness of VAMDC
 - is satisfying for people aware of the infrastructure subtleties
 - may be improved for newcomers and/or for transdisciplinary activities

The main lines of improvement identified may be summarized as follow:

- A single entry point should be provided to get all the information about a given node. Today this information is fragmented between the Species database and the Registry;
- The cross-references of metadata between the different pillar components should be in the form of persistent resolvable machine actionable identifiers;
- Register VAMDC standards and formats into ad hoc registries of types (e.g. FAIRsharing ones) and assign persistent resolvable machine actionable identifiers to each standard in order to easily refer to it;
- Systematically use FAIR compliant dictionaries to express knowledge;

Conclusions

The analysis was very useful !!

- The RDA FAIR Data Maturity Model, mainly designed for standalone data-sets or repositories, perfectly scales in the case of a distributed and complex e-infrastructure as VAMDC
- The FAIRness of VAMDC
 - is satisfying for people aware of the infrastructure subtleties
 - may be improved for newcomers and/or for transdisciplinary activities

The main obstacles that explain the unsatisfactory evaluation for the Reusable principle are related to the absence of a license-policy and the non-adoption of a standard representation for provenance information.

Very hard to define licenses in an international (i.e. multi-juridical) framework

Standard (W3C/IVOA) provenance representations are difficult to handle for end-users. A readme file fulfils VAMDC users' needs