

LIRA

Encyclopedia of Exoplanetary Systems

Quentin Kral Paris Observatory/LESIA

> *Journées ASOV 2025 24 mar 2025*

The Encyclopedia of Exoplanetary Systems

Global Authority in Exoplanetary Data


- >7,400 confirmed objects (<60 Jupiter masses)</p>
- >30,000 scientific publications linked to the database

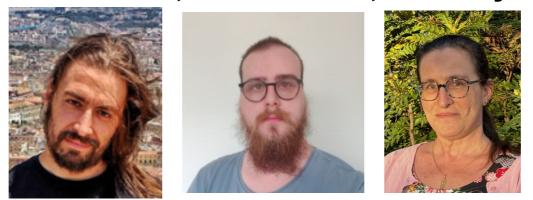
Community Impact

- **25,000+ monthly users** researchers, educators, enthusiasts
- **1,900+ citations** in astrophysics journals

Scope & Accessibility

- 🔍 Includes:
- Confirmed and candidate exoplanets
- Free-floating planetary-mass objects
- Systems with stars, brown dwarfs, and binaries
- Atmospheric data

The Team


Researchers

Q. Kral (PI), F. Roques, J. Schneider – P. Thébault (binary database)

Engineers P.Y. Martin, U. Chosson, F. Henry

+ Expert science editorial committee – Transition to an Expert committee by field

The Catalogue

Jouvence of the website in 2023-2024

Home Catalogue Plots Tools EX planet ev News Bibliography Meetings Links 💥 🕶

0

ENCYCLOPAEDIA OF EXOPLANETARY SYSTEMS

This encyclopaedia provides the latest detections and data announced by professional astronomers on exoplanetary systems. It contains objects lighter than 60 masses of Jupiter, which orbit stars or are free-floating. It also provides a database on exoplanets in binary systems, a database on circumstellar disks, an exhaustive bibliography, a list of exoplanet-related meetings, and links to other resources on the subject.

Established in February 1995 Developed and maintained by the exoplanet TEAM

Last update: March 11, 2025 currently 7419 planets.

The catalog: Filter, sort, export

The plots: Online plotting tool

Recent News	BIBLIOGRAPHY Full bibliography of the catalogue	PLANETS IN BINARIES Binary systems and exoplanets	OTHER SITES Relevant professional web sites	
Info	Last update: March 11, 2025	Last update: March 5, 2025	Last update: Jan. 8, 2025	
MARCH 6, 2025 Over 100 new systems have been added to our planets- in-binaries database, representing a 30% increase (a	RESEARCHES Ongoing Programmes	MEETINGS Future and past	VIEW OF PLANETS AROUND US Polar plot of	
machine-readable table of all systems can be found here)	and Future Projects	meetings	exoplanets	

The Catalogue

Jouvence of the website

March 10, 2025 — March 12, 2025 HAPPENING NOW

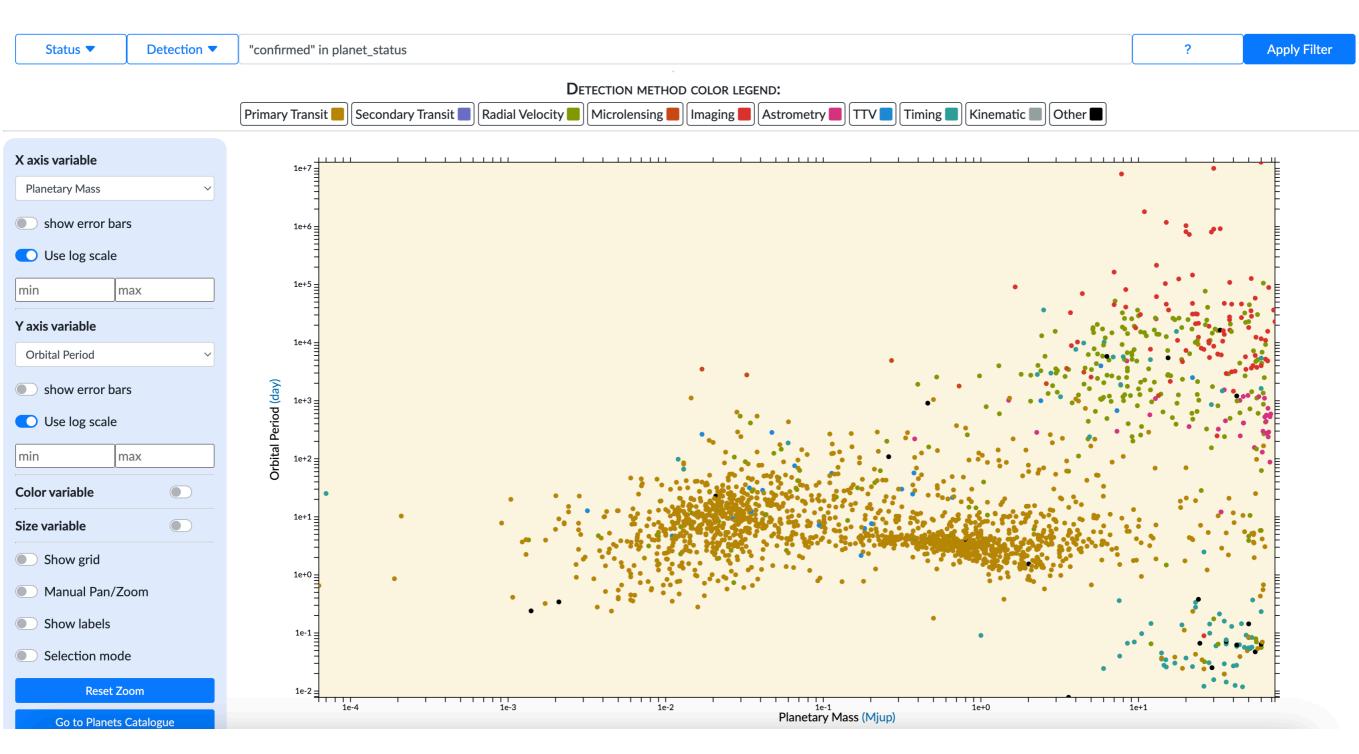
Gas Accretion in Planet formation (GAP)

Ø Heidelberg, Deutschland

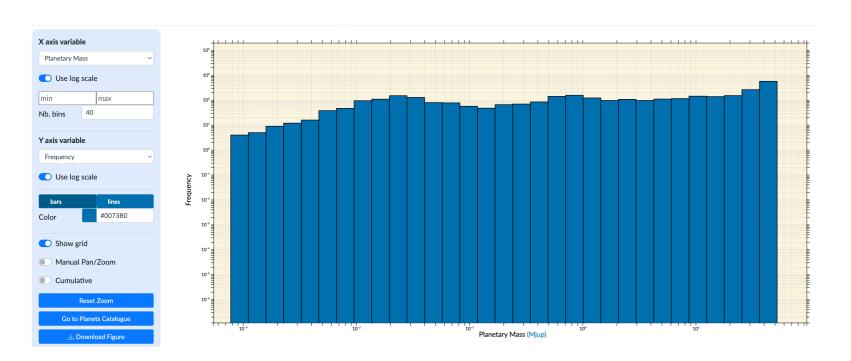
March 10, 2025 — March 14, 2025 HAPPENING NOW

Towards New Frontiers: The Astrochemical Journey from Young Stellar Nurseries to Exoplanets

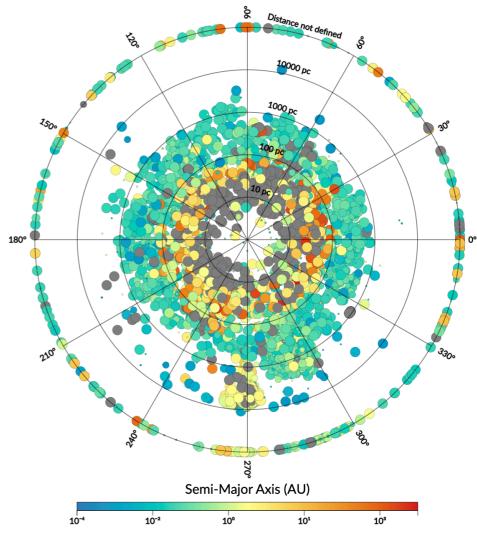
Garching, Deutschland


March 10, 2025 — March 14, 2025 HAPPENING NOW

Lunar and Planetary Science Conference


Ø Woodlands, TX, USA

The Catalogue


Jouvence of the website

Other plots

Histograms

Polar plots

Can access: 28 stellar parameters 54 planet parameters

Massive work accomplished to catch up with the website's technical debt

From python 2.7 to python 3.10

From Django 1.9 to Django 3.2

0 automatic tests to 22810

Clean management of the dependencies with npm (web) and poetry (Python)

From SVN to Gitlab

+many other modifications...

SEE TALK ABOUT TECHNICAL SIDE IN SEMI-HACKATHON SESSION (Pierre-Yves Martin + Ulysse Chosson)

Key Updates in 2024

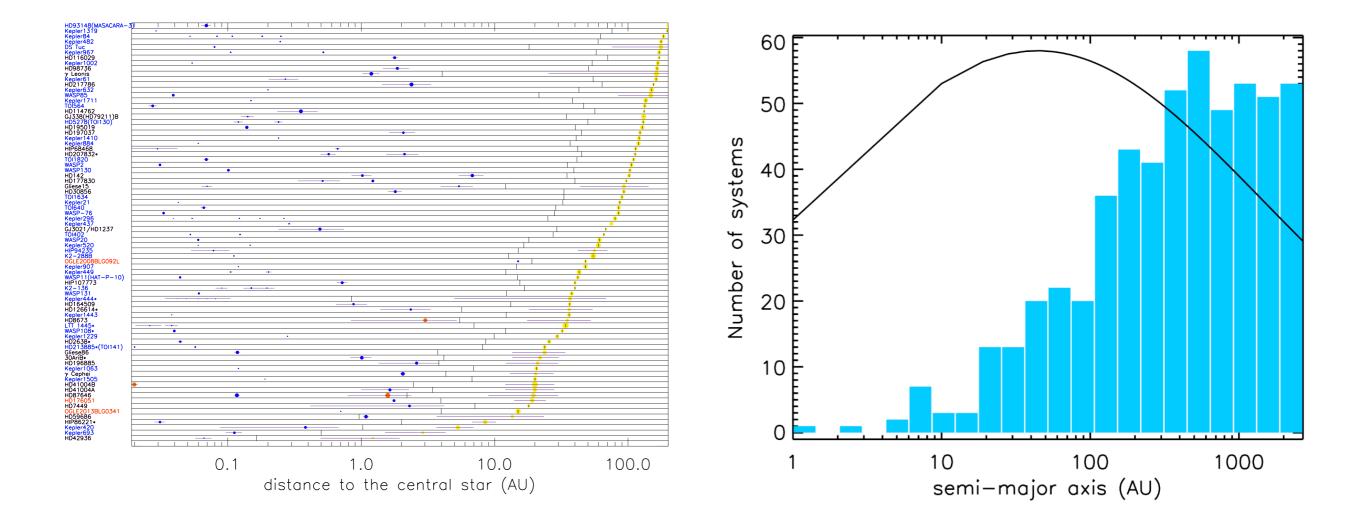
Added 1,000+ new objects in 2024

7428 confirmed objects to date — the largest database globally

Comparison with NASA's Archive

Surpassed NASA's exoplanet count even when applying their stricter criteria (we have >300 more objects):

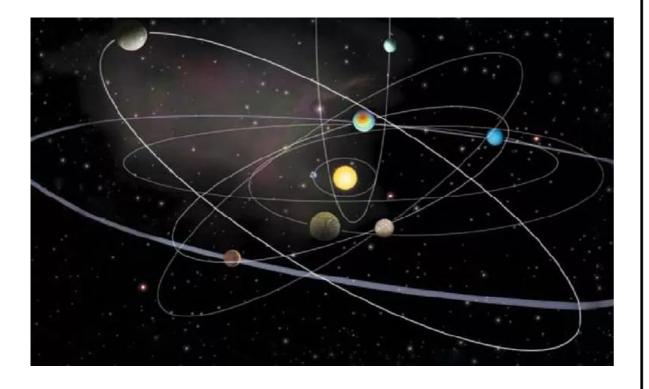
- No free-floating planetary-mass objects
- Mass limit: <30 Jupiter masses


Major Breakthrough (a few days ago): Binary Systems

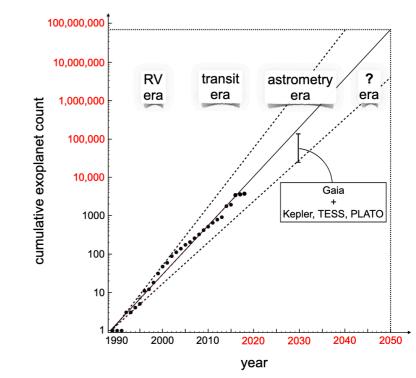
60% increase in exoplanets listed in binary/multiple-star systems

% 545+ binary systems now cataloged which is unique

The binary database


List all exoplanets on S-type orbits in binaries with separations up to 2000au (currently 545 systems) + 30 P-type (circumbinary)

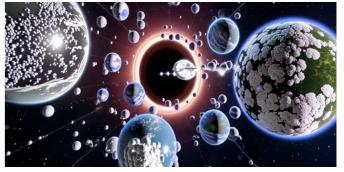
Vision for the coming years


TWO main goals being tackled at the moment

1) From an exoplanet database to that of a planetary system

- Accourt for disks, exomoons, exocomets...
- Include some observation data?

2) Coping with massive increase of number of planets by 2030


Fig. 1. Extrapolation of the exoplanet count into the year 2050. The black solid line is a fit to the data from 1988 to 2018, which hits a value of almost 100,000,000 in 2050. The dashed lines are the envelopes of the data. Red numbers along the abscissa and ordinate denote the ranges of extrapolation, for which no data is yet available. The vertical bar above the year 2030 refers to a combination of the currently known exoplanet population and expected exoplanet yields for Gaia, TESS, and PLATO as presented in the literature. The data points were taken from National Academies of Sciences & Medicine (2018) based on data by A. Weinberger/NASA Exoplanet Archive. Adapted and reproduced with permission from the National Academy of Sciences, Courtesy of the National Academies Press, Washington, D.C.

- 2030: ~100,000 planets (>10x growth)
- 2040: 1,000,000+ planets (if trends hold)

Evolving Beyond Exoplanets: A Holistic Planetary Systems Database

First Goal: From an exoplanet database to that of a planetary system

The Challenge

- Complexity of Planetary Systems:
- Interactions between disks, planets, exomoons, and binary stars
- Diverse objects: exoplanets, brown dwarfs, exocomets, disks, multiple stars
- Data Overload makes visual representation complex:
 - Many parameters and complex relationships
 - Risk of user confusion with inconsistent data representation

The Solution: EXODAM

- **#** A new Data Model for Exoplanetary Systems
 - Dynamic Frame: Adapts to new objects/parameters on the fly (e.g., exomoons, disks)
 - Unified Hierarchy: Organizes all system components (stars, planets, disks) into interconnected layers
 - Scalable: Zero technical maintenance required for adding new parameters
 - Universal: Could be used more globally for VO purposes

EXODAM

DOI: 12345exemples12345 objects : name : beta Pic exo_type : star alternate_names : bet Pic position : distance : value : 19.3 unit : pc uncert : 0.2 ra : 05:47:17.0 **dec** : -51:03:59 magnitude : magnitude_V : 3.86 physical : value : 1.73 unit : Msun uncert : 0.05 spectral_type : A6V age : value : 0.04 unit : Gyr uncert : 0.004 general : status : Confirmed discovered_date : 09/1994 publication_status : R url_simbad : http://simbad.u-strasbg.fr/simbad/ name : beta Pic c exo_type : planet alternate_names : bet Pic c orbital : period : value : 1227.0 unit : day

uncert : 110

An example of an EXODAM data model JSON file

Publications: Could provide new planets (or disks...) using this data model —> the planets would be integrated in no time.

More flexibility: New parameters can be added at will without breaking the database —> can include parameters that were not measured before or add info on disks, exomoons, exocomets, observational data, ...

In development: Ingestion of large lists of exoplanets from csv files using EXODAM

Scaling for the Exoplanet Data Tsunami (2030+)

Second goal: Cope with massive increase of number of planets by 2030+

The Challenge

Manual Data Entry:

- Current: ~7,400 planets (hand-curated)
- 2030: ~100,000 planets (>10x growth)
- 2040: **1,000,000+ planets** (if trends hold)

Unsustainable Workflow:

- Daily manual updates \rightarrow *impossible at scale*
- Risk of errors, delays, and incomplete data

Home > App > Planets > K2-2	268 f									
Change planet										
Main planet data Name:	K2-268 f	Stars:	Available stars			Chosen stars 📀		+	Planetary system:	٩
			Q Filter PSR J1311-3430 PSR J1959+2048 PSR J1653-0158 PSR J1653-0158 PSR J052-0607 HIP 99770 HR 3016 HR 2986 HD 57411 TOI-1288		0 0	K2-268				System for rogue planet
			CSS1603+19 G.L1002 Cho	oose all O	t more		emove all			
Planet status:	confirmed V Detection type:	[6] How the planet was detected: 1: Radial Velocity 2: Timing 4: Microlensing 5: Imaging 6: Primary Transit 7: Astrometry 8: TTV 9: Default 13: Secondary Transit 15: Disk Kinematics	Publication status:	R – Published in a refereed paper S – Submitted to a professional journal C – Announced on a professional confe W – Announced on a website		Year of discovery.	2019 V When the planet was detected			
Modified:	Dec. 1, 2022, 2:55 p.m. Status:	active Ohidden Whether the object is visible	 imported O suggested on the website or not 	d						
Physical parameters (Hide) Parameters of the planet. Specify parameter uncertainty in a form of an array, e.g. [0.1,0.2]' for a value.01 ^{+0.2} or simply [0.1]' for value±0.1. Use nan and inf for special cases of upper/lower limits and undefined value.										
Specify parameter uncertaint	y in a form of an array, e.g. '[0.1,0.2]' for a value _{-0.1} * ^{0.}	² or simply '[0.1]' for value±0.1. Use Planetary Radius erro		upper/lower limits and undefined value Unit:	L.	Rearth 🗸				

Scaling for the Exoplanet Data Tsunami (2030+)

Second goal: Cope with massive increase of number of planets by 2030+

The Solution: Automate & Democratize

EXODAM as the Universal Standard:

 Machine-Readable Data: Pre-formatted templates for users to submit their list of new data

• Community-Driven Uploads:

Oropbox portal for users to submit data + publications
 OAutomated validation + human cross-check

Bulk Ingestion:

- Pre-negotiate pipelines with missions (e.g., **PLATO's**)
- Al-assisted research, tagging, or relationship mapping?

REACH a Holistic System View

Unified System Pages

- All components in one place: planets, stars, disks, exocomets, exomoons.
- Interactive 3D environment (EXO-3D) showing different components (e.g., disk, exoplanet, binary star orbits, ...).

Q Specialized Sub-Catalogues with Tailored Access for Research Needs

- Atmospheres (spectra, chemistry) §
- Disks (protoplanetary/debris)
- Brown Dwarfs
- Free-Floating Planets SQ
- Binary Systems 💫
- Exocomets 🔍

In the future: sub-catalogues + ACCESS VIA DEDICATED API (compatible with EXODAM)

The disk database (restricted access for now)

See all definitions

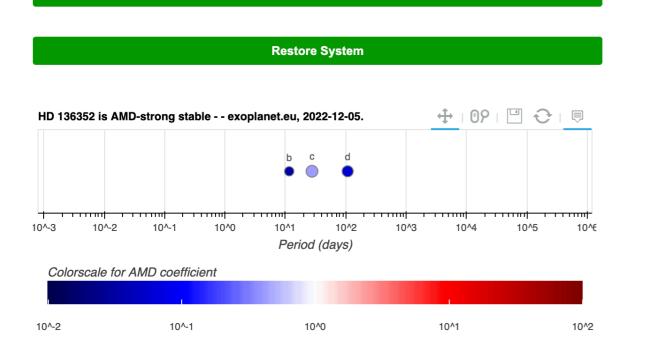
See all units

	DISK	STAR			
identify	2 parameters	identify 🕼	8 parameters		
object name 7	49 Ceti	object name 🔽	49 Ceti		
alternate object names ?	['HD-9672']	Moving Group 2	Argus association		
		First detection date	2016		
interna	1 parameters				
object status 🕐	confirmed	internal (2	2 parameters		
		rel_star_id 🔽	None		
orbital	1 parameters	object status 💈	confirmed		
nclination ?	73 deg ?	physical	3 parameters		
goomotr	iC 2 parameters	age 💈	40 Gyr 🔽		
geomeu	ic 2 parameters	effective temperature 👔	9970 K 7		
Half width of the disk 7	1.0 arcsec 7	spectral type 🔹	A1V		
Mean radius of the disk 👔	2.37 arcsec 7				
		position (3 parameters		
atmosphe	ric 1 parameters	right ascension 7	1 deg ?		
geometric albedo ?	0.17	declination 2	-15 deg 7		
		distance 👔	59 pc 🔽		
observatio	onal 2 parameters	moontitudo			
Fractional luminsoity of the disk 김	0.0009	magnitude	2 parameters		
Surface brightness peak 💈	0.000129 Jy/arcsec*2 7	magnitude_R 🔽	5.6		
		magnitude in V band 🚹	5.6		
		observationa	2 parameters		
		flux 🔽	10.18 mag 김		
		luminosity ?	20 ? 7		

Tools of <u>exoplanet.eu</u>

All tools developed using the exoplanets catalogue.

Current online tools

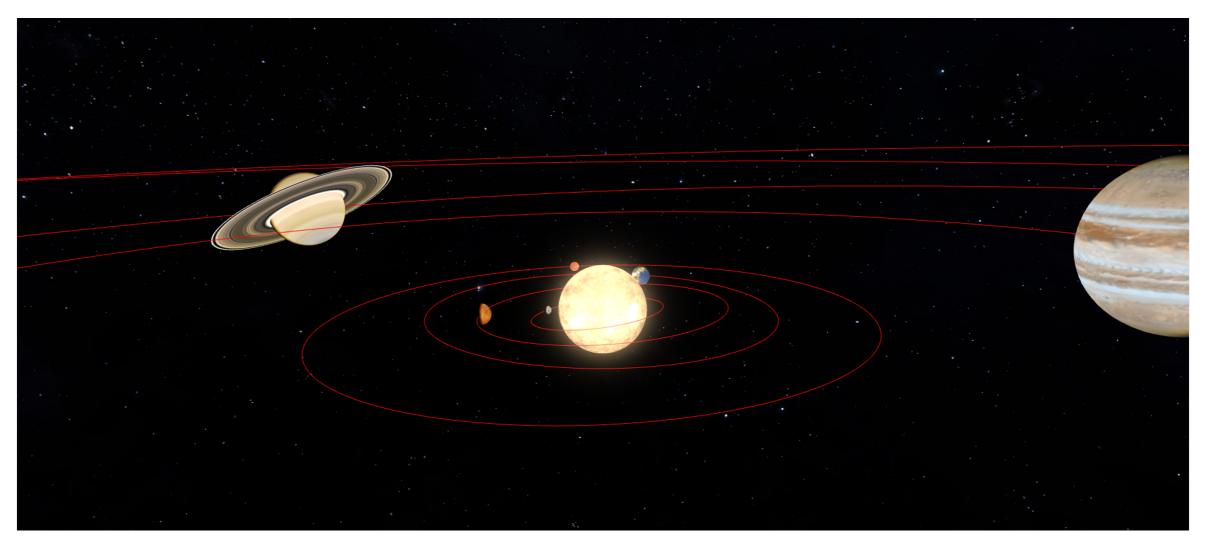

AMDf-stability of the system HD 136352

Parameters of the system:					
	value	min err	max err		
HD 136352 b					
eccent (e) :	0.079	0.053	0.068		
mass (m) :	0.01454	0.00142	0.00142 MJup		
period (T) :	11.57779	0.001	0.001 day		
HD 136352 c					
eccent (e) :	0.037	0.026	0.039		
mass (m) :	0.03552	0.00217	0.0023 MJup		
period (T) :	27.5909	0.0031	0.028 day		
HD 136352 d					
eccent (e) :	0.075	0.053	0.085		
mass (m) :	0.02775	0.00296	0.00296 MJup		
period (T) :	107.63	0.19	0.19 day		

Update Graph

Set Errors to Zero

Tool developed to assess the stability of a planetary system over long timescales (from Laskar & Petit, 2017).



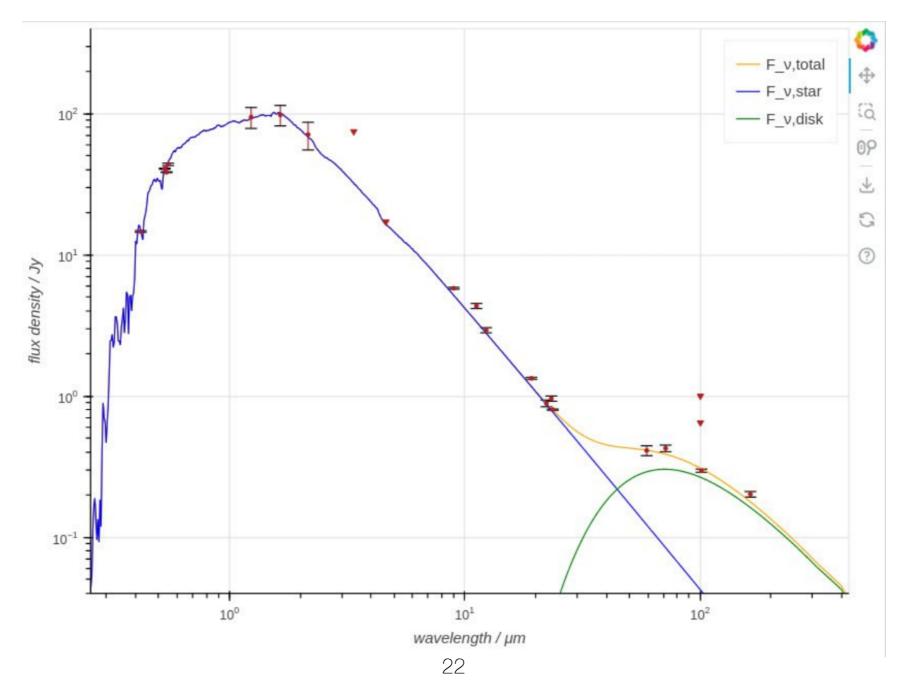
+other tools: GCM 1-D, Observability Predictor, Exoris

Exo3D

New tool developed by the IT team of <u>exoplanet.eu</u> (our ANR funded a trainee to do that, T. Bedrine)

A snapshot of the tool:

The Exo-3D tool in video


Activités	🎯 Google Chrome 🔫		16 déc. 13:38		🔹 🛋 🕐 🗣 🕯 🛨
	🖊 Feature inclin 🗴 🛛 🖪 Collapse	Boo 🗙 📙 Bootstrap Ico 🗙 📄 💁 ArcRotateCan 🗴 📄 💽 Array	y.from()- 🗙 S Use JSDoc: @ 🗙 📴 Goog	gle Tradu 🗙 📔 🧔 Absolute pos 🗙 🛛 🥃 Absolute Po	🗄 🗙 😒 Exo3D : en dé 🗙 🕂 🔍 🗕 🕫 😣
	← → C ▲ Non sécurisé http	:// 0.0.0 :8000/exo3d.html			¤ > ☆ 🗯 🌍 :
	Time since the beginning of the animati 0 years, 11 months and 24 days.	on :			
	▲ Distances are scaled correctly but si are explicitely bigger. Planets do still respect their ratios between each other				
A	although not with the star.				
>					
9					
			A.		
>_					
8					
	Animation speed	Speed by planet	Scaling of the system	Star scale - 55:1 Focus of the camera	
8		1 2 3 4 5 6 7	8 Realistic Didactic	Planets scale - 1595:1 System Planet	Free
	carnet de stage.pdf ^				Tout afficher ×

Accessible in the browser and in Virtual Reality and soon in Augmented Reality (with $e_X @ed_U$)

The ExoDisk tool

Disk SED Predictor

- Radiative transfer tool for disk observations
- **Trainee-led** → Aids ALMA/observatory planning
- Built with Bokeh \rightarrow Fast dev + secure updates
- Requires GRATeR code coupling (Partner: IPAG)

The ExoREM tool

ExoREM: Exoplanet Spectrum Predictor

- JWST transit planning tool
- Trainee-led development
- Next steps: Testing + deployment on *exoplanet.eu*

Spectra Application					
Effective temperature in k Kelvin. 400	Spectrum 1 Teff: 400.0	Filename: spectra_YGP_400K_logg3.0_met0.31623_CO0.10.dat			
Log of gravity. 3 O Metallicity. 0.32 O	Logg: 3.0 Metallicity: 0.31623	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			
Carbon on Oxygen ratio. 0.1	CO Ratio: 0.1 Distance: 0.003769999999999999956 Ratio:0.4	4000 0.2252 0.2252 0.2252 0.2252 0.2225 0.2225 0 0.225 0.2252 0.2225 0.2225 0.2225 0 0.2251 0.2252 0.2225 0.2225			
Number of Results: 2		0 0.5 1 1.5 2 2.5 3 3 4 4 4 Wavelength (micron) Wavelength (micron) Wavelength (micron) 0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3			
Search	Spectrum 2	Filename: spectra_YGP_500K_logg3.0_met1.00_CO0.55.dat Wavelength (micron) Wavelength (micron)			
	Teff: 500.0	4000 - Flux lambda 0.220785 - Transit Depth			
	Logg: 3.0				
	Metallicity: 1.0				
	CO Ratio: 0.55				
	Distance: 100.00332444474033 Ratio:0.8				
		0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3 Wavelength (micron) Wavelength (micron)			

The scholar website

0.1

EX 😶 planet 🖳

Base de données Activités en classe Boite à out

Portail pédagogique des exoplanètes

🌐 en | fr

Que vous soyez enseignant ou simplement curieux, vous trouverez ici tous les chemins pour explorer le monde des exoplanètes :
Des questions sur les exoplanètes
Des cours sur les exoplanètes
La base de données
Des activités en classe
La boite à outils des chercheurs d'exoplanètes

Depuis une trentaine d'années, les connaissances s'accumulent. Mais pour commencer, écoutez un chercheur d'exoplanètes présenter les premières étapes de cette quête et son lot de surprises, la plus importante étant qu'il y a... Des planètes partout.

Accueil

In development. Funding by PEPR Origines + EXO4Edu (internationalisation)

The Road Ahead: Scaling exoplanet.eu

Great Showcase for OBSPM but Challenges on the way

1 Team Capacity:

- **3-person team** → *2 retired (emeritus)*
- Urgent need: Hire engineers + scientists to manage growth
- 🖊 Data Deluge:
- 100,000+ exoplanets expected by 2030 (Manual processes → *unsustainable*)
- All exoplanetary components to ingest (e.g. disks, exocomets, ...)

Immediate Priorities

- Stabilize:
- Finish and deploy tools (ExoREM, Exo3D, ExoDisk)
- Finalize integration of EXODAM data model in backend
- Launch community upload portal (dropbox, API, csv ingestion)
- **Leverage Community**:
- Crowdsource ideas (e.g., RV/transit data integrations)
- Gather experts on each subfields to secure sets of data

Call to Action

🔧 We Need:

- **Engineers**: Backend scaling (EXODAM), Al/automation, Frontend development (Tools)
- Scientists: Data ingestion/validation, Tool developments for users

🌍 Join Us:

• Collaborate with us if you are interested ₂₅